Deep Learning Based Proarrhythmia Analysis Using Field Potentials Recorded from Human Pluripotent Stem Cells Derived Cardiomyocytes

April 10, 2019

Zeinab GolgooniSara MirsadeghiMahdieh Soleymani BaghshahPedram AtaeeHossein BaharvandSara PahlavanHamid R. Rabiee

Early Access Note:
Early Access articles are new content made available in advance of the final electronic or print versions and result from IEEE’s Preprint or Rapid Post processes. Preprint articles are peer-reviewed but not fully edited. Rapid Post articles are peer-reviewed and edited but not paginated. Both these types of Early Access articles are fully citable from the moment they appear in IEEE Xplore.

Deep Learning Based Proarrhythmia Analysis Using Field Potentials Recorded from Human Pluripotent Stem Cells Derived Cardiomyocytes

Abstract:

An early characterization of drug-induced cardiotoxicity may be possible by combining comprehensive in vitro proarrhythmia assay and deep learning techniques. We aimed to develop a method to automatically detect irregular beating rhythm of field potentials recorded from human pluripotent stem cells (hPSC) derived cardiomyocytes (hPSC-CM) by multi-electrode array (MEA) system. We included field potentials from 380 experiments which were labeled as normal or arrhythmic by electrophysiology experts. Convolutional and recurrent neural networks (CNN and RNN) were employed for automatic classification of field potential recordings. A preparation phase was initially applied to split 60-second long recordings into a series of 5-second windows. Subsequently, the classification phase comprising of two main steps was designed and applied. The first step included the classification of 5-second windows by using a designated CNN. While, the results of 5-second window assessments were used as the input sequence to an RNN that aggregates these results in the second step. The output was then compared to electrophysiologist-level arrhythmia detection, resulting in 0.83 accuracy, 0.93 sensitivity, 0.70 specificity, and 0.80 precision. In summary, this study introduces a novel method for automated analysis of “irregularity” in an in vitro model of cardiotoxicity experiments. Thus, our method may overcome the drawbacks of using predesigned features that restricts the classification performance to the comprehensiveness and the quality of the designed features. Furthermore, automated analysis may facilitate the quality control experiments through the procedure of drug development with respect to cardiotoxicity and avoid late drug attrition from market.

READ FULL ARTICLE ON IEEE XPLORE

Login

New Here? Sign Up

Looking for increased exposure in the field of biomedical engineering? EMBS offers journals, conferences and a community for biomedical engineers. Membership includes PULSE Magazine.

Join EMBS